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Dear Colleagues, 
 
 
 
Together with the other organizers, I want to thank Mr. Eric Alterman for making possible 
this Conference and Summer School. 
 
We welcome all participants, and specially those among you who made the extra effort to 
prepare a presentation, and to follow custom-made advice from the Scientific Committee. 
 
We celebrate the quality and novelty of the abstracts submitted. Some of the contributions 
attracted great interest from members of the Scientific Committee; our warmly felt thanks 
to you. We are also glad because some new talks will be presented at the conference, and 
we are sorry for some authors who wished to come and cannot attend the Conference. 
 
Finally, there will not be parallel sessions. Everybody could thus hear talks by everybody 
else. Allow us then to make a recommendation, or a request if you will. It may help if, 
without sacrificing contents of your papers, you introduce highlights that are not meant for 
experts. We shall thus achieve that everybody will take something home from everybody 
else's talks. Please remind me (Jose) to follow my own advice, at least during my lectures. 
 
Abstracts appear in alphabetic order. Occasionally, it may not look that way because there 
are cultures where names and given names do not go in the same order as in the West. 
 
I will be pleased to meet all of you in person in Brasov. 
 
 
 
Cordially, 
 
Jose G. Vargas, Chairman. On behalf of the Organizing Committee. 
 
 
 
July 2016 
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talk 1

PROJECTIVE, CLIFFORD AND GRASSMANN ALGEBRAS AS
COMPLEMENTARY GRADED ALGEBRAS

Oliver Conradt a

a Section for Mathematics and Astronomy
Goetheanum, Dornach (Basel), Switzerland.

mas@goetheanum.ch [presenter, corresponding]

In this talk we will establish projective algebra Λn together with the complementary graded
Clifford algebra Γn and compare both (a) to what is usually known as Grassmann algebra and
(b) to Grassmann algebra in the approach of John Brown. [1]

The 2n-dimensional projective algebra Λn(+, ·,∧,∨) and the 2n-dimensional complementary
graded Clifford algebra Γn(+, ·, ,∗) both carry the imprint of a graded algebra twice, i. e.
they have a dual axiomatic structure. Projective algebra is the more fundamental concept than
the complementary graded Clifford algebra, since any complementary graded Clifford algebra
shows also the structure of projective algebra whereas projective algebra is standing on its own.

John Browne used the term Grassmann algebra in [1] to describe the body of algebraic the-
ory and results based on Graßmann’s Ausdehnungslehre from 1844 and 1862. This Grassmann
algebra shows a dual axiomatic structure as projective algebra and complementary graded Clif-
ford algebra do. We will compare Grassmann algebra in the approach of John Browne with the
complementary graded algebras Λn and Γn.

REFERENCES

[1] J. Browne, Grassmann Algebra. Volume 1: Foundations. Exploring extended vector algebra with Mathe-
matica. Barnard Publishing, Eltham, Australia, 2012, ISBN 978-1479197637.
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talk 2

PROJECTIVE GEOMETRY WITH PROJECTIVE ALGEBRA

Oliver Conradt a

a Section for Mathematics and Astronomy
Goetheanum, Dornach (Basel), Switzerland.

mas@goetheanum.ch [presenter, corresponding]

Many analytic descriptions for projective geometry are not representing the complete wealth
of projective geometry such as it is know from synthetic projective geometry. In most of the
analytic descriptions the basic elements are reduced to points or to points and hyperplanes,
but do not, for example, include the lines and linear complexes of space (in the form of basic
elements). A further failure often is that the principle of duality is not reflected by the analytic
description.

In order to overcome these boundaries, the 2n-dimensional projective algebra Λn(+, ·,∧,∨) was
developed.

This talk will provide a system of axioms for projective geometry Pn in terms of projective al-
gebra Λn. Concepts of projective geometry such as the principle of duality, primitive geometric
forms, the cross ratio of four basic elements and projective transformations will be determined
in terms of projective algebra.

The above mentioned system of axioms for projective geometry will be compared to other
approaches to projective geometry. [1, 2, 3, 4, 5]

REFERENCES

[1] R. Baer, Linear Algebra and Projective Geometry. Academic Press, New York, 1952.
[2] H. Pottmann and J. Wallner, Computational Line Geometry. Springer, Berlin, 2010.
[3] J. Richter-Gebert, Perspectives on Projective Geometry. Springer, Berlin, 2011.
[4] H.-J. Stoß, Koordinaten im projektiven Raum. Verlag am Goetheanum, Dornach, 2009.
[5] R. Ziegler, Projective Geometry and Line Geometry. Verlag am Goetheanum, Dornach, 2012.
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PEANO READER OF H. GRAßMANN'S AUSDEHNUNGSLEHRE

Paolo Freguglia 

Department of  Information Engineering, 
 Computer Science and Mathematics (DISIM) 

University of L’Aquila, Italy 

In this talk I propose an analysis of Peano’s studies about the geometric calculus. In the 
volume of 1888 (Geometric Calculus according to H. Grassmann’s Ausdehnungslehre
preceded by the operations of deductive logic), Peano presents Grassmann’s ideas 
(Ausdehnungslehre, 1844) in an original way: he gives an Euclidean interpretation to the 
fundamental Grassmannian notions. Hence by means of his geometric calculus, Peano is able 
to show theorems of projective geometry. Therefore, Peano’s geometrical calculus (which has 
an intrinsic mathematical interest in order to the applications to the geometry and to the 
mechanics) has an implicit foundational role. The disciple of Peano who devoted himself 
above all to the studies of  geometric calculus was Cesare Burali Forti (1861-1931); but also 
Filiberto Castellano (1860-1919), Tommaso Boggio (1877 - 1963) and  Mario Pieri (1860-
1904)  took an interest in the subject.
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talk

THE AFFINE AND PROJECTIVE GEOMETRIES
FROM GRASSMANN’S POINT OF VIEW

Ramon González a

a Institut Pere Calders
Campus Universitat Autònoma de Barcelona s/n

08193 Cerdanyola del Vallès, Sapin.
rgonzalezcalvet@gmail.com

Grassmann’s powerful but largely undefined approach to affine and projective geometries has
roots in Möbius’ barycentric calculus [1]. In his appraisal of the former’s work, Peano showed
explicitly the relation of barycentric coordinates with Cartesian coordinates [2]. In our Treatise
([3] p. 33) we went beyond Peano’s work by displaying the advantage of barycentric coordi-
nates in dealing with the main theorems of projective geometry (Desargues, Pappus, etc.). By
giving the equations of lines and planes with barycentric coordinates, we explain the geometric
duality in a purely algebraic way ([3] p. 43, [4]). The generalization of the barycentric co-
ordinates leads to projective frames and coordinates, which allows us to work with the whole
projective geometry of an n-dimensional space without defining the projective space PRn as
projection of an n+1 dimensional space. We will also display the advantages of expressing the
equations of quadrics with projective coordinates of the three-dimensional space. According to
Grassmann ([5], [6] p. 385), the product of two points is a line, the product of three points is
their plane and the product of four points is the whole space. In the same way, the successive
products of dual points in the dual space generate geometric elements having decreasing dimen-
sions [7]. Then, Grassmann’s products of points and dual points will be identified respectively
with the operators join and meet of the projective geometry. Finally, let us emphasize that all
these conclusions can be generalized to n-dimensional spaces.

REFERENCES

[1] A. F. Möbius, Der Barycentrische Calcul (Leipzig, 1827). Facsimile edition of Georg Olms Verlag
(Hildesheim, 1976).

[2] G. Peano, “Saggio di calcolo geometrico” (1896), Opere Scelte III, pp. 166-186, ed. Cremonese, (Roma,
1959). Translated by Hubert C. Kennedy in “Essay on geometrical calculus”, Selected works of Giuseppe
Peano, pp. 169-188, Univ. of Toronto Press (1973).

[3] R. González Calvet, Treatise of Plane Geometry through Geometric Algebra (Cerdanyola del Vallès, 2007).
[4] R. González Calvet, El álgebra geométrica del espacio y tiempo (2011-) http://www.xtec.cat/ rgon-

zal1/espacio.htm, p. 64.
[5] H. Grassmann, Extension Theory (2000), in the series History of Mathematics vol. 19, American Math-

ematical Society and London Mathematical Society, p. 138. Translation of the 2nd edition of Die Aus-
dehnungslehre (Berlin, 1862) by Lloyd C. Kannenberg.

[6] E. Cartan, “Nombres complexes”, Encyclopédie des Science Mathématiques (French edition) I, 1, article
1-5, pp. 329-468, Gauthier Villars (Paris, 1908). Reprinted by Jacques Gabay cop. (2005).

[7] R. González Calvet, “How to explain affine point geometry”. Talk given at the ICCA 10 (Tartu, August
2014). http://www.xtec.cat/ rgonzal1/affine point geometry.pdf .
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talk

OF GRASSMANNIAN ALGEBRAS AND THE ERLANGEN PROGRAM,
WITH EMPHASIS ON PROJECTIVE GEOMETRY

José G. Vargas a

a PST Associates

Grassmann’s legacy is certainly constituted by his many revolutionary concepts and by exterior
algebra, rightly attributed to him and which sometimes bears his name. But he also put a foot
in the door of Cliifford algebra and, to quote É. Cartan, he also created a very fruitful geometric
calculus —specially for projective geometry— where both points and vectors pertain to the
first or primitive class [1]. Grassmann did his work [2] during the golden age of synthetic
geometry, which also was the stone age of the algebraic foundations of projective geometry.
As we shall show, these foundations are subordinate to those of affine geometry, which is
the reason why É. Cartan developed his general theory of connections starting not with the
Euclidean or projective ones, but with affine connections. The same will be the case here for the
corresponding elementary or Klein geometries, which the theory of the different connections
generalizes [3].

The use of algebra that respects the equivalence of all points in affine geometry —thus the
absence of a “zero point”— leads to the concept of canonical affine frame bundle, where the
frames are constituted by a point and a vector basis. But bundles of frames made of points or
of lines or, in dimension n, of linear varieties of dimension (n−1), may also be used in affine
geometry [4]. This leads us to consider the relation of frame bundles to Klein geometries.

The representation up to a proportionality constant of projective transformations as homogra-
phies, which constitute the projective group of matrices, almost fits the Erlangen program. But
the subgroup that leaves a point unchanged —essential in Klein geometries— and the matrix
representation of the affine group are typically overlooked. So has been, therefore, the issue
of what synthetic projective transformations are directly related to the post-affine entries in
the homographies. We exhibit the subgroup of such transformations and show that the proper
homologies —i.e. not involving elements at infinity— are directly related to those entries.

We re-interpret from the canonical frame bundle González’s version of Möbius-Grassmann-
Peano theory, the usefulness of that bundle being enriched in the process. Thus, his special
barycentric coordinates now also belong to a theory of moving frames where one includes
“frames that do not move”. Improper elements, arising from the use of homogeneous coordi-
nates, are not needed if duality is not taken too far, as when one replaces the statement that
“parallel lines do not intersect” with the statement that “they intersect at a point at infinity”. It
is worth noting that the line at infinity is dual to the centroid of a triangle, which is not a special
point. So, duality is a very important correspondence, but does not respect the equivalence of
all points (unless, of course, we were to create an unnecessary superstructure that mimicked the
bundles of frames). Thus González’s treatment of Grassmann’s system for projective geometry
takes it closer to the theory of the moving frame. Of course, there is nothing moving in this
case, since nothing needs to do so in the Klein geometries; only their Cartanian generalizations
need that the frames “move”.

We proceed to briefly summarize Cartan’s derivation of the equations of structure of projective
connections [5].
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Finally, the Kähler calculus[6] can claim to have Grassmann in its ascendancy. We shall illus-
trate how it blends Clifford algebra and exterior calculus.

REFERENCES

[1] É. Cartan: ”Nombres complexes”. Encyclop. Sc. math. French edition, I5, 1908.
[2] H. Grassmann, A New Branch of Mathematics. The Ausdehnungslehre of 1844, and Other Works, translated

by Lloyd C. Kannenberg. Open Court, Chicago, 1995.
[3] É. Cartan: ”Sur les variétées a connexion affine et la théorie de la relativité généralisé”, Ann. École Norm.

40, 325-412 (1923).
[4] R. González-Calvet, Treatise of Plane Geometry through Geometric Algebra , 1996.
[5] É. Cartan, ”Sur les varietées à connexion projective”, Bull. Soc. math 52, 205-241, 1924.
[6] E. Kähler, ”Der innere Differentialkalkül”, Rendicoti di Matematica e delle sue Applicazioni, XXI, 425-

523, 1962.
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talk

ON CLIFFORD ALGEBRAS AND RELATED TO THEM
FINITE GROUPS AND GROUP ALGEBRAS

Rafał Abłamowicz a

a Department of Mathematics, Tennessee Technological University
Cookeville, TN 38505, U.S.A.

rablamowicz@tntech.edu, http://math.tntech.edu/rafal/

Abstract: Albuquerque and Majid [7] have shown how to view Clifford algebras Clp,q as
twisted group rings Rt [(Z2)

n] whereas Chernov [10] has observed that for each Clifford alge-
bra Clp,q there exists a finite 2-group G of order 2p+q+1 such that Clp,q is a homomorphic image
of its group algebra R[G]. Abłamowicz and Fauser [4, 5, 6] have introduced a special transpo-
sition automorphism T−

ε of Clp,q and have studied various subgroups of Salingaros vee groups
Gp,q ⊂ Clp,q in relation to spinor representations of Clp,q. Depending on the isomorphism
class of Clp,q, every Salingaros vee group belongs to one of five families of central products
of extra-special dihedral group D8, the quaternionic group Q8 and Z2 ×Z2, or Z4 (Brown [9],
Salingaros [26, 27, 28], Varlamov [30]). The purpose of this talk is to bring these concepts to-
gether in an attempt to relate algebraic properties of Clifford algebras to the properties of these
groups and their group rings.

Keywords: 2-group, central product, Clifford algebra, extra-special group, group algebra,
transposition, Salingaros vee group

REFERENCES

[1] R. Abłamowicz: ”Computation of non-commutative Gröbner bases in Grassmann and Clifford algebras”.
Adv. Applied Clifford Algebras 20 (3–4) (2010) 447–476.

[2] R. Abłamowicz, R. and B. Fauser ”Mathematics of CLIFFORD: A Maple package for Clifford and Grass-
mann algebras”, Adv. Applied Clifford Algebras 15 (2) (2005) 157–181.

[3] R. Abłamowicz and B. Fauser: GfG - Groebner for Grassmann - A Maple 12 Package for Groebner Bases in
Grassmann Algebras, http://math.tntech.edu/rafal/GfG12/ (2010).

[4] Abłamowicz, R. and B. Fauser: ”On the transposition anti-involution in real Clifford algebras I: The trans-
position map”, Linear and Multilinear Algebra 59 (12) (2011) 1331–1358.

[5] R. Abłamowicz and B. Fauser: ”On the transposition anti-involution in real Clifford algebras II: Stabilizer
groups of primitive idempotents”, Linear and Multilinear Algebra 59 (12) (2011) 1359–1381.

[6] R. Abłamowicz and B. Fauser: ”On the transposition anti-involution in real Clifford algebras III: The auto-
morphism group of the transposition scalar product on spinor spaces”, Linear and Multilinear Algebra 60
(6) (2012) 621–644.

[7] H. Albuquerque and S. Majid: ”Clifford algebras obtained by twisting of group algebras”, J. Pure Applied
Algebra 171 (2002) 133–148.

[8] R. Bonezzi, N. Boulanger, E. Sezgin, P. Sundell: Frobenius-Chern-Simons gauge theory, arXiv:
1607.00726v1, July 4, 2016.

[9] Z. Brown: Group Extensions, Semidirect Products, and Central Products Applied to Salingaros Vee Groups
Seen As 2-Groups, Master Thesis, Department of Mathematics, TTU, Cookeville, TN, December 2015.

[10] V. M. Chernov, ”Clifford Algebras as Projections of Group Algebras”, in Geometric Algebra with Appli-
cations in Science and Engineering, E. B. Corrochano and G. Sobczyk, eds., Birkhäuser, Boston (2001)
461–476.

[11] C. Chevalley: The Algebraic Theory of Spinors, Columbia University Press, New York, 1954.
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[12] L. L. Dornhoff, Group Representation Theory: Ordinary Representation Theory, Marcel Dekker, Inc., New
York, 1971.

[13] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.8; 2015,
http://www.gap-system.org.

[14] D. Gorenstein, Finite Groups, 2nd. ed., Chelsea Publishing Company, New York, 1980.
[15] J. Helmstetter, ”Groupes de Clifford pour de formes quadratiques de rang quelconque”. C. R. Acad. Sci. Paris

285 (1977) 175–177.
[16] J. Helmstetter: Algèbres de Clifford et algèbres de Weyl, Cahiers Math. 25, Montpellier, 1982.
[17] G. James and M. Liebeck, Representations and Characters of Groups. Cambridge University Press, 2nd ed.,

2010.
[18] T.Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin, London, 1980.
[19] P. Lounesto: Clifford Algebras and Spinors. 2nd ed. Cambridge University Press, Cambridge, 2001.
[20] K. D. G. Maduranga, Representations and Characters of Salingaros’ Vee Groups, Master Thesis, Department

of Mathematics, TTU, May 2013.
[21] K. D. G. Maduranga and R. Abłamowicz: ”Representations and characters of Salingaros’ vee groups of low

order”, Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 66 (1) (2016) 43–75.
[22] C. R. Leedham-Green and S. McKay, The Structure of Groups of Prime Power Order, Oxford University

Press, Oxford, 2002.
[23] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995.
[24] D. S. Passman, The Algebraic Structure of Group Rings, Robert E. Krieger Publishing Company, 1985.
[25] J. J. Rotman, Advanced Modern Algebra, 2nd. ed., American Mathematical Society, Providence, 2002.
[26] N. Salingaros, ”Realization, extension, and classification of certain physically important groups and alge-

bras”, J. Math. Phys. 22 (1981) 226–232.
[27] N. Salingaros, ”On the classification of Clifford algebras and their relation to spinors in n dimensions”,

J. Math. Phys. 23 (1) (1982) 1–7.
[28] N. Salingaros, ”The relationship between finite groups and Clifford algebras”, J. Math. Phys. 25 (4) (1984)

738–742.
[29] V. V. Varlamov: ”Universal coverings of the orthogonal groups”. Adv. in Applied Clifford Algebras 14 (1)

(2004) 81–168.
[30] V. V. Varlamov, ”CPT Groups of Spinor Fields in de Sitter and Anti-de Sitter Spaces”, Adv. Appl. Clifford

Algebras 25 (2) (2015) 487–516.
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talk

POLYNOMIAL PERMUTATIONS OF FINITE RINGS AND FORMATION OF
LATIN SQUARES

Vadiraja Bhatta G.R.

Department of Mathematics,
Manipal Institute of Technology,

Manipal University, Manipal - 576104, Karnataka, India
vadiraja.bhatta@manipal.edu [presenter and corresponding author]

Shankar B. R.

Department of Mathematical And Computational Sciences (MACS),
National Institute of Technology Karnataka,

Surathkal, Karnataka, India
brs@nitk.ac.in

Combinatorial designs have wide applications in various fields, including coding theory and
cryptography. Many examples of combinatorial designs can be listed like linked design, bal-
anced design, one-factorization etc. Latin square is one such combinatorial concept. In this
talk, we have considered different types of permutation polynomials over some finite rings.
Over finite rings, we have observed that univariate permutation polynomials permute the ring
elements whereas bivariate permutation polynomials form Latin squares. The Latin squares
formed thus by permutation polynomials over finite rings are discussed with respect to various
Latin square properties.

REFERENCES

[1] Ronald L. Rivest, Permutation Polynomials modulo 2w. Finite Fields and their Applications, 7(2),287-292,
2001.

[2] Vadiraja Bhatta G. R. and Shankar B. R, Variations of Orthogonality of Latin Squares. International Journal
of Mathematical Combinatorics, Vol.3, 55-61, 2015.

[3] Vadiraja Bhatta G. R. and Shankar B. R, Permutation Polynomials modulo n,n �= 2w and Latin Squares.
International Journal of Mathematical Combinatorics, Vol.2, 58-65, 2009.
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SCALED PLANAR NEARRINGS

Bieber Marie a , Kuncham Syam Prasad b, Kedukodi Babushri Srinivas c,∗

a Department of Mathematics, Technische Universität Wien, Austria
marie.bieber@outlook.com

b,c Department of Mathematics, Manipal Institute of Technology, Manipal, Karnataka, India
b syamprasad.k@manipal.edu

c babushrisrinivas.k@manipal.edu [Presenter∗, Corresponding Author∗]

Abstract: A nearring (N,+, ·) is a structure similar to a ring, but without the request to be
additively commutative and with just one of the distributive laws. In this work, we deal with
a special nearring structure called planar nearring and introduce a new structure called scaled
planar nearring. We prove that every scaled planar nearring is zero symmetric and deduce
some structure theorems. We illustrate that the scaling factor of the scaled planar nearring
can be used to understand ideas from projective geometry. Let (F,+, ·) be a finite nearfield and
N = F×F . It is well known that if F is a field then the affine plane (N,L,ε) is desarguesian and
that finite nearfields (which are not fields) can be used to construct non-desarguesian planes.
We demonstrate that a suitable choice of scaling factor can be made to construct desarguesian
planes or non-desarguesian planes.

REFERENCES

[1] E. Aichinger, F. Binder, J. Ecker, P. Mayr, C. Nöbauer, SONATA - system of near-rings and their applica-
tions, GAP package, Version 2.6; 2012 (http://www.algebra.uni-linz.ac.at/Sonata/).

[2] G. Betsch, On the beginnings and development of nearring theory, Near-Rings and Near-Fields: Proceed-
ings of the Conference on Near-Rings and Near-Fields Fredericton, New Brunswick, Canada, July 18–24,
1993, Springer (1995).

[3] S. Bhavanari, S. P. Kuncham, B. S. Kedukodi, Graph of a nearring with respect to an ideal, Commun.
Algebra 38 (2010) 1957-1962.

[4] J. R. Clay, Nearrings: Geneses and Applications, Oxford Science Publications (1992).
[5] W. F. Ke, On recent developments of Planar Nearrings, Nearrings and Nearfields: Proceedings of the

Conference on Nearrings and Nearfields, Hamburg, Germany July 27–August 3, 2003, Springer (2005).
[6] W. F. Ke, H. Kiechle, G. Pilz, G. Wendt, Planar nearrings on the Euclidean plane, J. Geom., 105 (3) (2014)

577–599.
[7] B. S. Kedukodi, S. P. Kucham, S. Bhavanari, Reference points and roughness, Inform. Sci., 180 (2010)

3348-3361.
[8] S. R. Nagpaul, S. K. Jain, Topics in applied abstract algebra, American Mathematical Society (2005).
[9] G. Pilz, Nearrings, North Holland Publishing Company (1983).

[10] O. Veblen, J. H. Maclagan-Wedderburn, Non-Desarguesian and Non-Pascalian geometries, Trans. Am.
Math. Soc., 26 (1907) 379-388.
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talk

HIGHER DIMENSIONAL REPRESENTATIONS OF SL 2
AND ITS REAL FORMS VIA PLÜCKER EMBEDDING

Danail Brezov a and Petko Nikolov b

a Department of Mathematics, UACEG, 1 Hristo Smirnenski Blvd., 1046 Sofia, Bulgaria
brezov fte@uacg.bg [presenter, corresponding]

b Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
pnikolov@phys.uni-sofia.bg

In the present paper we study the inclusion of the complex Lie algebra sl2 ∼=so3⊂son realized
as a Plücker embedding, and thus, attempt to construct higher dimensional representations of
the real forms of SO3 in terms of SO(n) and SO(p,q) transformations, beyond the standard
block-matrix realization. Moreover, we consider Euler and Wigner type decompositions in
this setting and show how the Plücker relations appear in a natural way. Explicit examples are
provided for n= 3, 4 and 5 in the context of special relativity, classical and quantum mechanics.

REFERENCES

[1] Wigner E., On Unitary Representations of the Inhomogeneous Lorentz Group, Ann. Math. 40 (1939) 149-
204.

[2] Bogush A. and Fedorov F., On Plane Orthogonal Transformations (in Russian), Reports AS USSR 206
(1972) 1033-1036.

[3] Fedorov F., The Lorentz Group (in Russian), Science, Moscow 1979.
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A SYSTEMATIC CONSTRUCTION OF REPRESENTATIONS OF QUATERNIONIC
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The appearance of quaternions in representation theory is usually by accident, both poorly
understood yet thought to be deeply meaningful [5, 6]. Examples are the representations of root
systems in 3D and 4D in terms of (pure) quaternions, as well as representations of quaternionic
type of the polyhedral and other groups.

I have demystified the former in previous work, showing that 4D root systems are induced from
3D root systems in complete generality; in particular, the 3D root systems can only be realised
in terms of pure quaternions when the corresponding reflection group contains the inversion
[1, 2, 3]. The emergence of the 4D root systems hinges on the Clifford algebra of 3D, or rather
its even subalgebra. The spinors describing rotations in 3D (from even products of the reflection
generating root vectors) can be endowed with a well-known 4D Euclidean distance. The axioms
of a root system are then easily satisfied: firstly, via the Euclidean metric a 3D spinor group
can be treated as a collection of vectors in 4D; secondly, Clifford spinorial methods provide a
double cover of rotations such that the 4D collection of vectors contains the negatives of those
vectors, and thirdly with respect to the 4D Euclidean distance and using some other properties
of spinors, the collection of 4D vectors is closed under reflections amongst themselves. These
representations of root systems in terms of quaternions therefore systematically hinge purely on
the geometry of 3D and the accident that the even subalgebra, i.e. the spinors, is quaternionic.

Here I discuss systematically the representation theory of the intimately related polyhedral
groups [4, 2]. The 8D Clifford algebra of 3D space allows one to easily define various repre-
sentations: the trivial one, parity, the usual 3×3 rotation matrix representation acting on a 3D
vector achieved by sandwiching a vector with the corresponding versor, or the 8×8 represen-
tation of the group elements as reshuffling the multivector components in the whole 8D algebra
under multivector multiplication. The representations we will focus on, however, are those de-
fined by acting with any spinor on another general spinor. This reshuffles the components of
the general spinor, which can also be expressed as a 4×4 matrix acting on the spinor in column
format. It is not surprising that again because of the quaternionic nature of the even subalgebra
the representations of quaternionic type of the polyhedral groups arise naturally and geometri-
cally in a systematic way. Both observations therefore demystify quaternionic phenomena as
consequences of 3D geometry, and in particular the ‘mysterious deep significance’ is simply
provided by their spinorial nature – both simple yet underappreciated.
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I will discuss a new construction of the modular group [1]. My interest in the modular group
stems from recent Moonshine observations, relating string theory, finite simple groups and
(mock) modular forms [2, 3]. The modular group is a subgroup of the 2D conformal group and
I use the conformal model in Geometric Algebra with the corresponding Clifford realisations
of the conformal group [4, 5] to construct a new realisation of the modular group. The double
cover of the modular group is the braid group; of course this Clifford construction in fact
provides a double cover of the conformal and thus modular groups, and we will discuss the
relation with the braid group.
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Non – associative generalization of supersymmetry is offered [1]. 3– and 4–points associa-
tors for supersymmetric generators are considered. On the basis of zero Jacobiators for three
supersymmetric generators we have obtained the simplest form of 3–point associators. The
connection between 3– and 4–point associators are considered. On the basis of this connection
4–point associators is obtained. The Jacobiators for the product of four supersymmetric gen-
erators are calculated. We discuss possible physical sense of numerical coefficients presented
on the RHS of associators. The possible connection between supersymmetry, hidden variables
and non – associativity is discussed.
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The classic vector analysis is unable to describe the Relativity and Quantum Field Theory so
that an increasing attention to the geometric algebra (GA) and geometric calculus (GC) has
been paid. We present an exponential, pre-spatial arithmetic scheme (”all-powerful scheme”)
to overcome the limitation of the traditional probabilistic modeling veil opacity in complex arbi-
trary multiscale system modeling. Most recent approaches take into consideration multivariate
cumulative distribution function and all current implementations rely on statistic and proba-
bilistic analysis only. To grasp more reliable representation of experimental reality researchers
and scientists need two intelligently articulated hands: both statistical and combinatorical ap-
proaches synergistically articulated by natural coupling. We need to consider a model not only
on the statistical manifold of model states but also on the combinatorical manifold of low-level
discrete, elementary phased generators. CICT (computational information conservation theory)
[1] new awareness of a discrete HG (hyperbolic geometry) subspace (reciprocal-space, RS) of
coded heterogeneous hyperbolic structures, underlying the familiar Q Euclidean direct-space
(DS) surface representation, shows that any natural number n in N has associated a specific,
non-arbitrary extrinsic or external phase relationship that we have to take into account to full
conserve overall system component information content by computation in DS [2]. Traditional
Q numeric system elementary arithmetic long division remainder sequences can be interpreted
as combinatorically Optimized Exponential Cyclic Sequences encoding hyperbolic geometric
structured information, as points on a discrete Riemannian manifold, under HG metric [3].
They can encode both modulus and extrinsic phase information, which elementary phased gen-
erator intrinsic phase can be computed from. Phased generators can even offer a solution to
parallel transport problems, taking into account associated components extrinsic phase rela-
tionships and their consonant or dissonant behavior. We show how to unfold the full informa-
tion content of Rational numeric representation (nano-microscale discrete representation) and
to relate it to a continuum framework (meso-macroscale) effectively. GA and GC unified math-
ematical language with CICT can offer a competitive and effective ”Science 2.0” [2] universal
arbitrary multiscale computational framework for biophysical applications.
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ON MATRIX REPRESENTATIONS OF GEOMETRIC (CLIFFORD) ALGEBRAS
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The representations of geometric (Clifford) algebras with square real matrices [1, 2] are re-
viewed in order to see whether some advantage can be gained when considering them from an
arithmetic point of view [3], meaning without resorting to algebraic structure. Many isometries
such as rotations [4, 5, 6] and Lorentz transformations [7] are written as similarity transforma-
tions of matrices, which will be chosen as the general definition of isometry. Then, it will be
deduced in which geometric algebras all the known isometries as well as the transformations
that could be considered isometries can be written as similarity transformations. Since similar
matrices have the same characteristic polynomial [8], the norm of every element of a geometric
algebra should be defined from some combination of its coefficients. It is proposed to define
the norm of every element of a geometric algebra as the nth-root of the absolute value of the
determinant of its matrix representation with dimension n× n, which is the independent term
of the characteristic polynomial. Some examples of the usefulness of this definition will be
provided in order to confirm its consistency and generality.
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Our goal is to grasp an object lying in 3D space using inverse kinematics. Using image analysis
with two cameras located in independent axes we calculate the position of the reference line and
grasp the object lying in this line. We use some advantages of CGA in our particular setting.

Classically, for modeling a 3D robot, the whole CGA (i.e. C l(4,1)) is used, where the embed-
ding R

3 → K
4 → R

4,1 is considered, where K
4 is a null cone and R

4,1 is a Minkowski space.
Consequently, the embedding is of the form c(x) = x+ 1

2x2e∞+e0. Note that e0 and e∞ play the
role of the origin and the infinity, respectively.

CGA provides a set of basic geometric entities to compute with, namely points, spheres, planes,
circles, lines, and point pairs. These entities have two algebraic representations, IPNS and
OPNS which are duals of each other by convolution (·)∗. In OPNS representation we can
handled with spheres c(x1)∧ c(x2)∧ c(x3)∧ c(x4), planes c(x1)∧ c(x2)∧ c(x3)∧ e∞, circles
c(x1)∧ c(x2)∧ c(x3) and lines c(x1)∧ c(x2)∧ e∞. In OPNS, the sphere is represented as S =
c(x)− 1

2r2e∞, where c(x) is a center point and r is a radius. Note that the properties and
definitions of conformal geometric algebras can be found in e.g. [2].

The problem, we split into two parts:

1. Binocular vision. Using the data obtained from both cameras, the line symmetry is trans-
formed from the image coordinates to camera coordinates, i.e. from R

2 → R
3. With the lines

L1 and L2 in IPNS representation and the camera focuses c1 and c2 we create two planes L1∧c1
and L2 ∧ c2 in IPNS, such that, the reference line is an intersection of these planes.

1. Inverse kinematics. Our robot has five degrees of freedom obtained by means of the five
joint angles θ1, . . . ,θ5. Our goal is to find the joint angles in terms of the target position. In
CGA, this inverse kinematics problem can be solved in a intuitive way by the handling of
intersections of spheres. For example, let us have two links Pi−1Pi and PiPi+1, i.e. the joint
Pi has to lie on the sphere with center point Pi−1 and on the sphere with center point Pi+1

with the length of the vectors
−−−→
Pi−1Pi and

−−−→
PiPi+1 as the radius respectively. The first sphere is

represented by OPNS element Si−1 =Pi−1− 1
2 |
−−−→
Pi−1Pi|2e∞ and the second by OPNS element Si =

Pi+1− 1
2 |
−−−→
PiPi+1|2e∞. From the theory it is easy to see that (Si−1∧Si)

∗ is an OPNS representation
of circle, such that Pi belongs to this circle.
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Let N be a zero symmetric right nearring with identity 1 and Nn denote the direct sum of n
copies (n ≥ 2) of the underlying group (N,+). We consider the n×n matrix nearring over N,
denoted by Mn(N), generated by the set of functions {[a; i, j] : 1 ≤ i, j ≤ n,a ∈ N}. It is well
known that ideals in the base nearring N and related ideals in the corresponding matrix nearring
Mn(N) have been extensively studied in [5,11,13]. In this talk, some observations have been
made on idempotent elements, nilpotent elements in the nearring and the corresponding matrix
nearring. In case of a finite group G, with |G|= n, the notion of group nearring, defined in [3],
is closely related to Mn(N). Few analogue relationships between the ideals of nearring and that
of group nearring are presented. For preliminary definitions and results on nearrings, we refer
[6, 12].
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In [2], Jacobson viewed Clifford algebras as tensor products of Clifford algebras of lower di-
mensions. We develop further this point of view on Clifford algebras. We consider real or
complex Clifford algebras as tensor products of Clifford algebras of dimensions 2 and 1 and
obtain an analog (in terms of tensor products) of Cartan’s classification of real Clifford alge-
bras. In our opinion, the new point of view gives greater flexibility to the theory of Clifford
algebras and extends the possibilities of application of the mathematical apparatus of Clifford
algebras.

It is proved [1] that the tensor product of any Clifford algebras is isomorphic to a single Clifford
algebra over some commutative algebra. It is also proved that any complex or real Clifford
algebra Cl(p, q) can be represented as a tensor product of Clifford algebras of the second and
first orders. A canonical form of such a representation is proposed.
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In general, coherent states (|x〉)x∈X are a specific overcomplete family of normalized vectors
in the Hilbert space H of the problem that describes the quantum phenomena and solves the
identity of H as

1H =

∫

X

|x〉 〈x| dµ (x) .

These states have long been known for the harmonic oscillator and their properties have fre-
quently been taken as models for defining this notion for other models. We review the definition
and properties of coherent states with examples. We construct coherent states attached to Lan-
dau levels (discrete energies of a uniform magnetic field) on three known examples of Kähler
manifolds X: the Poincaré disk D, the Euclidean plane C and the Riemann sphere CP

1. Af-
ter defining their corresponding integral transforms, we obtain characterization theorems for
spaces of bound states of the particle. Generalization to C

n and to the complex unit ball Bn

and CP
n are also discussed. In these cases, we apply a coherent states quantization method to

recover the corresponding Berezin transforms and we give formulae representing these trans-
forms as functions of Laplace-Beltrami operators.
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The concept of linear 2- normed spaces was introduced by Siegfried Gahler in 1963 [6], which
is nothing but a two dimensional analogue of a normed space. This concept had received
the attention of a wider audience after the publication of a paper by A. G. White in 1969
entitled 2-Banach spaces [7]. In this talk we would like to present the recent developments
in Linear 2-normed spaces and 2-Banach algebras. We introduce the idea of expansive, non-
expansive and contraction mappings in linear 2-normed spaces eventually some of its properties
are established. The analogous of Banach fixed point theorem for contraction mappings in
linear 2- normed spaces is obtained, which leads to the existence of the solution of strong
accretive operator equation in linear 2-normed space. Some more analogues results in Linear
2-normed spaces and 2-Banach algebras are obtained.
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Facial Recognition Systems have been garnering attention from various researchers and 
enthusiasts in recent times, they are being deployed for numerous applications like those in 
identifying faces from a mass of subjects [1], noise removal from captured images, forensic 
applications [4], etc. The principle idea is to identify and extract individual features from the 
image of an individual’s face. The RGB image is first converted to grayscale and then in 
reference to a threshold intensity, are transformed into a binary matrix [6]. The end-point 
demarcations [7] of individual features, called feature points are identified from the image and 
the relative distances between relevant points are calculated using a wide range of algebraic 
functions like Euclid distance, eigenvectors, etc. These distances [5] are stored in the form of 
vectors and are then transformed as required. The images are classified on the basis of similar 
distances between concurrent features, and are grouped together under one class. This is 
represented as a point in a high dimensional space. Recent research is focused on improving the 
accuracy, efficiency and speed of existing systems. So, in this paper we focus on eigenvalues [3], 
eigenvectors arising due to factors like covariance matrix, dominant eigenvalues, principal 
components. The basic purpose of algebra, is to enhance the features, in terms of clarity, and also 
classification of data, using these features. In this paper, we have achieved, better extraction of 
features, when compared to artifacts [9], and also classification accuracies have improved when 
compared to existing literature. 
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CLIFFORD ALGEBRA IMPLEMENTATIONS IN MAXIMA

Dimiter Prodanov a

aDepartment of Environment, Health and Safety / Neuroscience Research Flanders
IMEC, Leuven, Belgium

dimiterpp@gmail.com; dimiter.prodanov@imec.be [presenter, corresponding]

Maxima is the open source descendant of the first ever computer algebra system and features a
rich functionality from a large number of shared packages. While written in Lisp, Maxima has
its own programming language, based on Lisp. The Maxima language is based on the ideas of
functional programming, which is particularly well suited for formal transformations of mathe-
matical expressions. The packages clifford and cliffordan authored by the presenter, implement
Clifford algebras C�p,q,r of arbitrary signatures and order. The clifford package defines multiple
rules for pre- and post-simplification of Clifford products, outer products, scalar products, in-
verses and powers of Clifford vectors [1]. Using this functionality any combination of products
can be put into a canonical representation, for example in the quaternion algebra C�0,2 :

mtable1([1, e[1],e[2], e[1] . e[2]]);




1 e1 e2 e1.e2
e1 −1 e1.e2 −e2
e2 −e1.e2 −1 e1

e1.e2 e2 −e1 −1




block(declare([a,b,c,d],scalar),cc : a+b∗ e[1]+ c∗ e[2]+d ∗ e[1].e[2],dd : cinv(cc))
a− e1 b− e2 c− (e1.e2) d

a2 +b2 + c2 +d2

The inner product is represented by the operator symbol ”|” and the outer (exterior, or wedge)
product by the operator symbol ”&”. For example the sum of the inner and outer products of
two elements immediately simplifies into the full Clifford product:

a | b + a & b;

a ·b
or the Jacobi identity automatically holds for the even-grade multivectors:

a & b & c + b & c & a + c & a & b;

0
The presentation will demonstrate applications of clifford and cliffordan in linear algebra and

calculus.
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FOCK REPRESENTATIONS AND DEFORMATION QUANTIZATION OF KÄHLER
MANIFOLDS
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The goal of this talk is to construct the Fock representation of noncommutative Kähler mani-
folds. Noncommutative Kähler manifolds studied here are constructed by deformation quan-
tization with separation of variables. This deformation quantization was given by Karabegov.
The algebra of the noncommutative Kähler manifolds contains the Heisenberg-like algebras.
Local complex coordinates and partial derivatives of a Kähler potential satisfy the commutation
relations between creation and annihilation operators. A Fock space is spanned by a vacuum,
which is annihilated by all annihilation operators, and states obtained by acting creation oper-
ators on this vacuum. The algebras on noncommutative Kähler manifolds are represented as
those of linear operators acting on the Fock space. We call the representation of the algebra
Fock algebra. In representations studied here, creation operators and annihilation operators are
not Hermitian conjugate with each other, in general. Therefore, the bases of the Fock space are
not the Hermitian conjugates of those of the dual vector space. In this case, we call the repre-
sentation the twisted Fock representation. In this presentation, we construct the twisted Fock
representations for arbitrary noncommutative Kähler manifolds given by deformation quanti-
zation with separation of variables, and we give a dictionary to translate between the twisted
Fock representations and functions on noncommutative Kähler manifolds concretely.
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ON SOME LIE GROUPS CONTAINING SPIN GROUPS IN CLIFFORD ALGEBRA

D. S. Shirokov a b
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shirokov@iitp.ru.

We consider 15 different Lie groups in Clifford algebra of arbitrary dimension and signature
and prove isomorphisms between these groups and classical matrix Lie groups - symplectic,
orthogonal, unitary and linear groups. Also we obtain isomorphisms of corresponding Lie
algebras. Information about pseudo-unitary group Wcl(p,q) you can find in [1], [2] and [3].
Several Lie groups are discussed in [4].

Spin group is a subgroup of all considered Lie groups. One of considered Lie groups coincides
with group Spin+(p,q) in the cases of dimensions n ≤ 5.

We use the notion of the quaternion type [5], [6] in our considerations. New classification based
on the notion of the quaternion type helps us to analyse [7] commutators of Clifford algebra
elements.
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talk WHAT THE KAEHLER CALCULUS CAN DO
THAT OTHER CALCULI CANNOT
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The progress of mathematics makes it sometimes fashionable to describe physical the-
ory in more modern forms, not necessarily deeper or more understandable. Of partic-
ular interest in this regard is relativistic quantum mechanics. Modern versions of it,
like through the use of geometric calculus (read Hestenes [1]), may be more appealing
than the original version of Dirac theory [2], but the physical contents remains virtually
unchanged in this case.

Enter the Kähler calculus [3]. Underlied by Clifford algebra of differential forms –
like tangent Clifford algebra underlies the geometric calculus– it brings about a fresh
new view of quantum mechanics. This view arises, almost without effort, from the
equation which is in this calculus what the Dirac equation is in traditional quantum
mechanics. One does not need to first hypothesize foundations of quantum mechan-
ics, which makes the Dirac version unintelligible even when one is adept at computing
with it. Many foundations come in the wash from the mathematics and very little ad-
ditional input. Not only Kähler theory reproduces the main Dirac-related results more
elegantly, but does so far more profoundly and shows the way to further developments.

In this paper, we shall deal with differences between the Dirac and Kähler versions
and, to a lesser extent, between Kähler and Hestenes. We limit ourselves to Kähler
calculus of scalar-valued differential forms. That is all that one needs to supersede the
Dirac and geometric calculus versions of relativistic quantum mechanics. We shall also
give a very brief inkling of Kähler calculus with post-scalar-valued differential forms,
as non-scalar-valuedness is needed for a unification of quantum and classical physics;
the curvature and Einstein tensors are inadequate representations of what by their very
nature are bivector-valued differential 2-forms and vector-valued differential 3-forms,
respecively.

We shall show how the characteristics of the Kähler calculus bode well with the devel-
opments of some great ideas, proposed but not carried to fruition or accepted, by some
geniuses of the 20th century, like Schwinger, Einstein, É. Cartan and Kähler, to name
just the best known ones. We shall also be specific about gems, both mathematical
and (mainly) physical, contained in this calculus. We shall also explain the mathemat-
ical philosophy of Kähler on a variety of issues (vector fields, differential forms, Lie
differentiation, unification of derivatives, product of tangent algebras with algebra of
integrands). Not suprisingly, his philosophy is the same as in É. Cartan’s work. We
shall also illustrate how some of the results that one achieves (mainly by Kähler him-
self) leave behind as not been sophisticated enough results which one finds deep into
very specialized books on group theory, harmonic function theory, complex variable
theory, cohomology theory, relativistic quantum mechanics and even particle theory.
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Let R = ⊕ j≥0R j be a homogeneous Noetherian ring with semi-local base ring R0, i.e., R0 has
only finitely many maximal ideal. Let R+ =⊕ j≥1R j be the homogeneous ideal of R, generated
by all positive degree homogeneous elements of R. We recall from [2] that a Z-graded R-module
T is tame or asymptotically gap free if Tn=0 for all n � 0, or else Tn �= 0 for all n � 0. Recall
also that, a sequence (Sn)n∈Z of subsets of Spec(R0) is said to be asymptotically stable for n →
−∞ if there exists m ∈ Z such that Sn =Sm for all n ≤ m. Using an idea of [2], for two finitely
generated Z-graded R-modules M and N, several results on the vanishing, Artinianness and
tameness of the graded R-modules Hi

R+
(M,N) = lim−→

n∈N
ExtiR(M/(R+)

nM,N) will be investigated.

Also, it will be shown that the sequence
(
AssR0(H

i
R+
(M,N)n)

)
n∈Z is asymptotically stable,

which in turn, implies that the sequence
(
SuppR0

(Hi
R+
(M,N)n)

)
n∈Z is asymptotically stable

too. Here, for an R0-module X the symbols AssR0(X) and SuppR0
(X) stand for the set of all

associated primes and support of X respectively [1].

REFERENCES

[1] M. Brodmann, R. Sharp, local cohomology: An algebraic introduction with geometric applications, Camb.
Uni. Press, 1998.

[2] M. Brodmann, M. Hellus, Cohomological patterns of coherent sheaves over projective schemes, J. Pure
Applied Algebra, 2002, pp. 165-182.

32

ALTERMAN CONFERENCE 2016



  



  




